

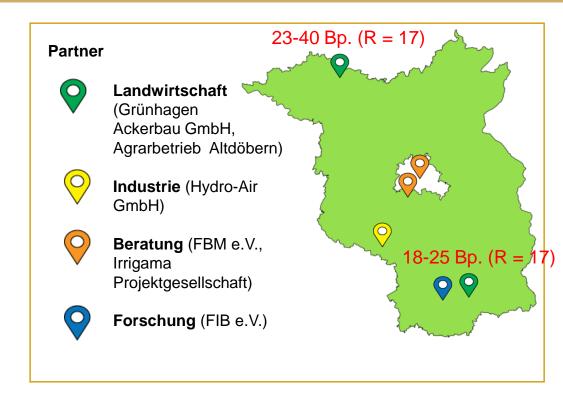
EIP-AGRI in Brandenburg

Fachaustausch Wissenschaft und Praxis

"Bodenfruchtbarkeit"

Projektuntersuchungen EIP "Steuerung des Zusatzwassereinsatzes in der Pflanzenproduktion" (OG Precision Irrigation)

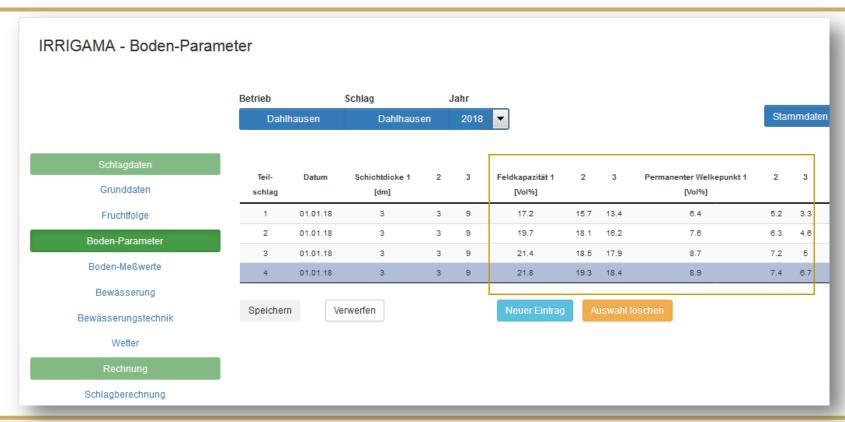
14. November 2018ATB Forschungsstandort Marquardt



Projektziele und OG

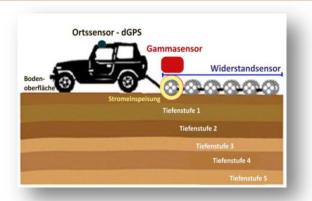
Ziel: Entwicklung einer anwenderfreundlichen Systemlösung für die Bewässerungssteuerung mit den Steuerkomponenten:

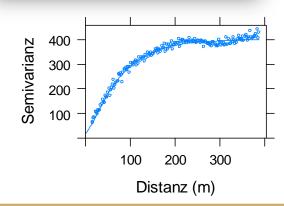
- situativ
- teilschlagspezifisch
- automatisiert

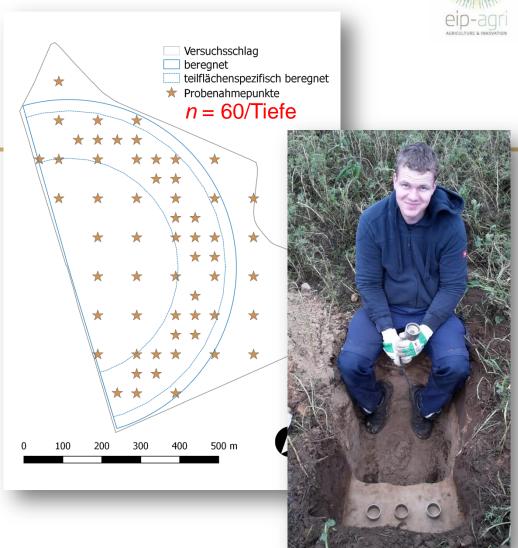


Bodenuntersuchungen: Eingangsdaten für Steuermodell

Methode


- Gesucht: 3-D-Bewässerungsmanagementzonen, wobei jede Zone in sich möglichst homogen sein sollte
- Komplexes Problem: drei Tiefenschichten und zwei Bodeneigenschaften
- Schritt 1: Geophysikalische Kartierung
- Schritt 2: Entwicklung eines Beprobungsschemas für die Bodenbeprobung
- Schritt 3: Räumliche Vorhersage der Zielvariablen in den drei Tiefen
- Schritt 4: Ableitung der BMZ





Schritte 1 und 2

Schritt 3 (Räumliche Vorhersage)

Methode: external drift (regression) kriging mit REML-Schätzung

On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML

```
R. M. Lark, a B. R. Cullis, b S. J. Welham c

First published: 28 October 2005 | https://doi.org/10.1111/j.1365-2389.2005.00768.x | Cited by: 139
```

 Ergebnis: r\u00e4umliche Vorhersage von FK und PWP in den drei Bodentiefen

Parameter und Güte des REML-Modells

Variable (Tiefe)	Variogramm-Parameter		Anzahl
r _{XY}	nugget/sill	eff. range (m)	Klassen*

^{*} Spannbreite / halbe Vertrauensintervallbreite

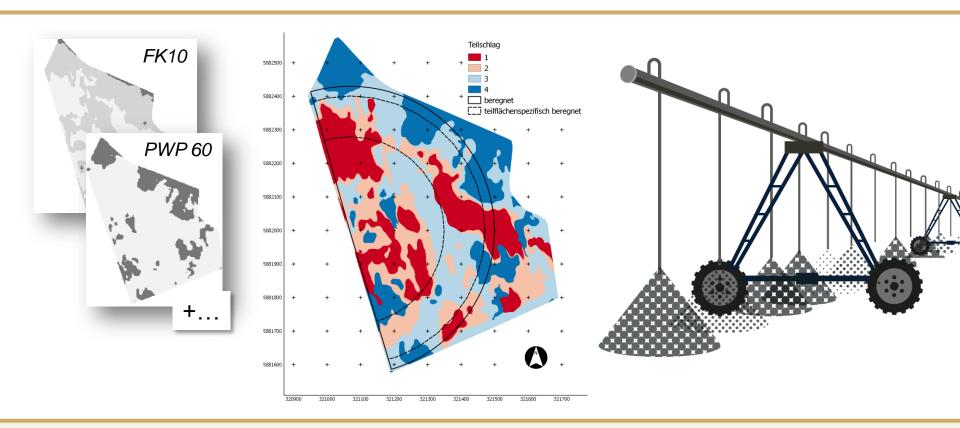
Parameter und Güte des REML-Modells

Variable (Tiefe)		Variogramm-Parameter		Anzahl
r _{XY}		nugget/sill	eff. range (m)	Klassen*
FK (10 cm) -0,76	FK transf (Vol%) 1.22 1.26 1.30 Who 1 (Ohmm)	0	62	3

^{*} Spannbreite / halbe Vertrauensintervallbreite

Parameter und Güte des REML-Modells (Auszug)

Variable (Tiefe)	Variogramm-Parameter		Anzahl
r_{XY}	nugget/sill	eff. range (m)	Klassen*
FK (10 cm) -0,76 -0,76	0	62	3
PWP (60 cm) (%) % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,5	131	2


^{*} Spannbreite / halbe Vertrauensintervallbreite

Ergebnis: Managementzonen für teilflächenspezifische Bewässerung

Schlussfolgerungen

- Ausweisung der Managementzonen mit vertretbarem Aufwand und zufriedenstellender Genauigkeit möglich
- Schnittstellen Karte-Steuermodell und Steuermodell-Anlagenbetrieb mit minimalem Nutzerinput entwickelt
- Wasserersparnis im bekannten Bereich (0% ca. 25%), abhängig von Witterungsbedingungen, Fruchtart & -folge, Flächenanteilen...

HEMMNISSE

- geschultes Personal ist Anwendungsvoraussetzung
 TAKF-HOMF
- Wissenschaftler: gesamten Prozess betrachten
- Landwirt: Wirtschaftlichkeit einer teilflächenspezifischen Bewässerung noch nicht abschließend geklärt

